Disaster Recovery for Ingres

Abstract

Disaster Recovery (DR) has always been important, but the events of recent years has increased the awareness and highlighted the importance of this often overlooked business function. The loss of mission-critical systems can result in a significant loss of revenue and opportunities. Being able to recover systems quickly, accurately, and completely is critical to the ongoing success of any business.

This presentation will first look at DR at a high level and then drill down to Ingres specific planning and recovery issues.
Biography

• Chip Nickolett
• Comprehensive Consulting Solutions, Inc.

Chip is the founder of Comprehensive Solutions (www.Comp-Soln.com), was a Senior Consultant for the Ingres Products division of the ASK Group, and was both a Consultant and Consulting Manager for Computer Associates. Chip is also a past President of the North American Ingres Users Association (www.naiua.org). He has worked on DR projects for the past 10 years in various environments.

Topics of Discussion

• What is Disaster Recovery (DR)?
• Typical Approaches to DR
• Where to Start
• Typical DR Plan
• Ingres Specific Planning
• Download Samples & Other Information
• Summary
Words of Wisdom

Dramatic change often comes as a response to imminent collapse.

--- Tom Peters

Strategy is not the consequence of planning, but the opposite: its starting point.

--- Henry Mintzberg

What is Disaster Recovery?

- Typical Response – **System Recovery**
 - But what systems?
 - Recovered to when?
 - Isn’t this what backups are for?

- **A better response is:** Disaster Recovery is the coordinated process of restoring systems, data, and infrastructure required to support key ongoing business operations.
What is Disaster Recovery?

- **Systems** include both hardware and software
- **Data** includes true data, log files and audit information, as well as “business knowledge” (such as procedures and business rules)
- **Infrastructure** includes phones, office space, remote access, intranets, websites, firewalls, etc.
- **Business Operations** are the things that your business does on a daily basis to generate revenue

Typical Approaches to DR

- **Hot Sites**
 - Need to maintain redundant environments
 - Use of Storage Networks (SANs) is ideal from a technical perspective
 - Replication or restore from current backups are two other commonly used techniques
 - Generally provides the benefits of proximity and availability
 - A true “hot site” is generally the most expensive, fastest to recover, and most reliable approach
Typical Approaches to DR

• DR Facilities & Service Providers
 – Cost is “fixed” over length of the contract
 – The cost for testing may be extra
 – Contracts may lack absolute guarantees and/or service level agreements (SLAs)
 – Hardware configuration issues common
 – Availability issues may occur
 – Possible Bandwidth / Accessibility issues
 – Are they committed to your success?

Typical Approaches to DR

• “We will just restore from backups”
 – Where will the restore occur?
 – Are you sure the backups are good?
 – Will the data from disparate systems be in sync?
 – What about offsite backups that are older?
 – Will the equipment be compatible?
 – What about remote access, network bandwidth, data security?
 – What about Running the Business?
Where to Start

• **Create a DR Team**
 – Executive Sponsor
 – DR Coordinator
 – Team Leads and Members
 – Need to define both primary and backup contacts for each team position. The goal is to not have any person become a “single point of failure”

Where to Start

• **Identify Business Requirements**
 – Requirements are different than Goals!
 – Identify functional areas to be recovered (for example: locations, lines of business, specific functionality)
 – Categorize those systems into Tiers
 1. Recover ASAP - generally within hours
 2. Recover within days or weeks
 3. Recover within a month or more
Where to Start

• **Identify Business Requirements** (continued)
 – Define the Recovery Time Objective (RTO). This is the goal for having the Tier 1 systems operational.
 – Define the Recovery Point Objective (RPO). This states how much data can be lost based on time from the point of failure going backwards.
 – Set expectations based on this common understanding of the business goals!

Where to Start

• **Identify & Categorize Risk**
 – What is the most likely to occur?
 • Fire?
 • Natural Disasters such as an earthquake, flood, tornado or hurricane?
 • Loss of infrastructure (power, network, facilities)
 • Terrorism? Hackers? Other “evil”?
 – Look at the probability and cost of each type of disaster, determine the “business adjusted risk” and then plan accordingly
Where to Start

• **Identify Critical Systems**
 - Key processes and applications
 - Dependencies on other systems
 - Interaction with other systems
 - Manual processes and intervention
 - Are there any business or legal requirements for this system (FDA, DoD, ISO 17799, NFPA 1600, HIPAA, Gramm-Leach-Bliley Act, Sarbanes-Oxley Act, etc.)? **If so you need to ensure compliance on an ongoing basis!**

Where to Start

• **Identify Key Personnel**
 - May not be part of the DR Team!
 - Identify Roles and Responsibilities
 - Associate Names with the Roles
 - Have a clear policy defined regarding who has authority to do what
 - For example, who can declare a disaster and under what circumstances?
Where to Start

- **Identify Single Points of Failure**
 - The goal is to mitigate unnecessary risk, *within reason*
 - Identify Single Point of Failure (SPOF) items
 - Estimate the Probability of Failure
 - Estimate the Number of Incidents per year
 - Estimate the Cost per Failure and the Annualized Loss Expectancy (ALE)
 - Compare the Cost of Mitigation to the ALE
Typical DR Plan

• A Project Plan that works
 – Just because it looks impressive in MS Project doesn’t make it a good or valid plan!
 – Shows critical systems
 – Shows dependencies, helps identify overlap
 – For most sites the plan should be at a higher level, pointing to detailed recovery procedures

Typical DR Plan

• Detailed Recovery Procedures
 – Design the procedure to be used by someone who is not an expert with the system being recovered
 – Provide specific commands and representative output from those commands
 – Provide check boxes and an area to write in time started / completed and comments
 – Cross-training provides both depth of coverage and validation of the process
Typical DR Plan

- **Detailed Recovery Procedures - Continued**
 - Provide troubleshooting information
 - Decision trees work well for this
 - Anticipate typical problems and proactively provide information to resolve the problem
 - Provide alternate means of recovery
 - Anticipate the worst (and plan accordingly) while hoping for the best

Typical DR Plan

- **Detailed Recovery Procedures - Continued**
 - Provide Vendor Support information
 - Technical Support contact information
 - License numbers
 - Sales person contact information – used to escalate issues if necessary
Typical DR Plan

• **Detailed Test Plans**
 – Need a way to validate that critical systems have been fully and properly recovered
 – Need to validate external access, access to dependent systems, data feeds, etc.
 – Will ideally provide the means to validate the accuracy of the data
 – Provide basic performance validation

• **Detailed Security Plan**
 – What needs to be secured and why?
 – Can secure and non-secure data “co-mingle” on a network?
 – Physical security and safety issues should be addressed
 – By what means will people be accessing these systems? Will the connection be secure?
 – Use of production passwords may be a concern at third-party recovery test sites
Typical DR Plan

• Plan to Restore Operations
 – In a true disaster the recovery site may be used for weeks or even months
 – Eventually the original operational site will be restored or rebuilt, at which time the recovery site will become unnecessary (or at least secondary)
 – Typically a “Reverse DRP” is used to restore the systems to their final production location

• Post-test clean-up
 – Remember, the restored systems are now de facto production systems
 – The systems should be thoroughly “scrubbed” once testing has been completed
 – Failure to do that may result in someone from some other company having access to your production data!
Typical DR Plan

• Standard Method to Define Success
 – We use a “Critical Success Factors” spreadsheet that uses weighted values assigned to various systems, functionality, and dependencies
 – Provides a way to demonstrate success and point out areas for improvement
 – Provides a means of tracking both progress and complexity of the overall plan
 – It also highlights flaws and problems due to its use of weighted values and dependencies

• Standard Review Process
 – Identify what went right and what went wrong - identify “lessons learned”
 – Determine why things went wrong and improve the process
 – Look for other opportunities for improvement
 – Efficiency
 – Integrity
 – Automation
Typical DR Plan

- **Test, Validate, and Refine**
 - Requires full scale recovery tests on a regular basis
 - Staff should be rotated as a means to verify the accuracy and ease of use of the recovery procedures
 - Failure to do this will result in providing a false sense of security!

Ingres Specific Planning

- **Gather OS specific information**
 - kernel / OS tuning parameters
 - disk configuration (df -k)
 - user & group information
 - OS version & patches applied
 - cron jobs (crontab file)
- It is important to know how to rebuild the system - don’t assume that the Systems Administrator will have all of this detail (even though they should)
Ingres Specific Planning

• Gather Ingres Installation Configuration Information
 – Customized files (termcaps, checkpoint templates)
 – config.dat, protect.dat, and symbol.tbl
 – ingprenv output redirected to a file
 – version.rel
 – The license file (/ca_lic/ca.olf)
 – select * from iiusers; (from iidbdb)
 – select * from iiusergroup; (from iidbdb)
 – select * from iiroles; (from iidbdb)
 – select * from iirolegrants; (from iidbdb)

Ingres Specific Planning

• Gather Database Specific Configuration Information
 – “unloaddb -c” and “infodb” output
 – select * from itables
 – select * from iiifile_info
 – select * from iiimulti_locations
 – help table *
 – help index *
 – “aaaaaaa.cnf” & “aaaaaaa.rfc” (may not exist)
 from the ii_database directory for each database
 – “aaaaaaa.cnf” from the ii_dump directory
Ingres Specific Planning

- Prerequisite Step – Restore Server (Mirror Production Configuration)
 - User Accounts and Groups
 - Filesystems (empty)
 - Size
 - Ownership
 - Mount points / paths
 - Any critical directories
 - Specific files that have been customized
 - OS kernel parameters & patches

Ingres Specific Planning

- Licensing & Support during a disaster
 - Contact CA Technical Support to make them aware of the situation in case you need help
 - Request a temporary license file (ca.olf)
 - Advantage Ingres 2.6 no longer uses the “MAC” address of a machine, so the license file should work on a new machine that is the same hardware platform as production
Ingres Specific Planning

- **Restoring the Ingres Installation**
 - OS Backup is generally fine
 - Also helps minimize problems related to customized files such as termcaps and checkpoint templates
 - Be prepared to reinstall Ingres
 - Implies that both the installation media and the patch media (for the patch version used in production) is readily available

- **Restoring the Databases**
 - rollforwarddb ideal
 - Point in time recovery requires journals and
 - Recovery up to the point of failure requires the transaction log file (SANs really help here)
 - OS Backups & Reload from unloads are a last resort
 - Know your RPO! (recovery point objective)
Ingres Specific Planning

• Validating the Databases
 – Have a well defined means of validating the integrity of the database
 • Table and row counts
 • Aggregate values that can be reproduced
 • Reports of specific activity (such as sales)
 • Overall size of the database

Ingres Specific Planning

• Validating the Environment
 – Do all required products work?
 – Do Ingres/Net connections work?
 – Are there any unusual errors in the errolog.log file?
 – Do all standard tools and facilities work?
 – Is performance consistent with what you are familiar with?
 – Test to make sure that “restricted access” really is!
Ingres Specific Planning

• Safeguarding the Environment
 – This is now production – treat it as such!
 – Immediately checkpoint the database(s) and enable journaling
 – Plan for routine care and maintenance of the environment
 • Checkpoints
 • Table modifications

Ingres Specific Planning

• Best Practices
 – Keep multiple copies of installation and patch media offsite (but readily available)
 – Collect important configuration information daily or weekly and save copies offsite
 – Validate your checkpoints on a regular basis
 – Manually remove checkpoint and journal files so that the configuration file (aaaaaaaa.cnf) does not lose knowledge of them.
 – Provide means of validating key data at any point of time (within reason)
Ingres Specific Planning

- Common Problems
 - Ingres Licensing
 - OS kernel parameters and/or patches different
 - Paths not the same
 - "hostname" is different (can be corrected, but it is far easier to make certain it is the same)
 - Ingres/Net password and vnode problems
 - Use hostnames instead of IP addresses when defining vnode entries to minimize problems
Download Samples / Other Info.

- Samples of many of the documents mentioned can be downloaded for free at www.Comp-Soln.com/IngresExpo.html
- Other (free) White Papers on Disaster Recovery and Business Continuity Planning can be found at www.Comp-Soln.com/whitepapers/

Summary

It is important to understand the true purpose of a DRP / BCP, define specific requirements, determine what constitutes success, and then develop a comprehensive plan to ensure success. This plan will need to be updated and refined over time as your business environment changes. Remember, success does not just happen - it is carefully planned.

Disaster Recovery Planning can be a challenging and expensive undertaking, but it is one that could literally determine the future of your company after a disaster.
Final Words of Wisdom

It is the mark of a good action is that it appears inevitable in retrospect.

-- Robert Louis Stevenson

Questions & Answers